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A Class of A-Stable Advanced Multistep Methods 

By Jack Williams and Frank de Hoog 

Abstract. A class of A-stable advanced multistep methods is derived for the numerical 
solution of initial value problems in ordinary differential equations. The methods, of all 
orders of accuracy up to ten, only require values of y' and are self starting. Results for the 
asymptotic behaviour of the discretization error and for estimating local truncation error 
are also obtained. The practical implementation of the fourth order method is described 
and the method applied to some stiff equations. Numerical comparisons are made with 
Gear's method. 

1. Introduction. Recently, particular attention has been given to the study of 
A-stable methods for the solution of the m ordinary differential equations 

(1.1) Y' = f(x, y), y(a) = rq, x C [a, b]. 

Let {fy} denote the solution of some difference method approximation of y' = qy, 
y(O) = 1, on the mesh xn } with fixed step size h. Then the difference method is 
called A-stable (in the sense of Dahlquist [3]) if I looI K - 0 as n and xA -* c for any 
fixed h > 0 and any scalar constant q with Re(q) < 0. This very strong stability 
requirement is particularly useful for the integration of stiff systems, that is, where 
the Jacobian matrix (af/ay) has some eigenvalues Xi for which Re( Xi) are negative 
and have greatly differing magnitudes. 

Dahlquist [3] shows that within the class of linear multistep methods, A-stable 
methods are necessarily implicit and that the A-stable formula having the smallest 
truncation error is the trapezoidal rule (of order p = 2). Examples of more accurate 
A-stable methods are given in [7], [1], [2], [12], [18], [19] and [20]. Lapidus and 
Seinfeld [14] and Gear [10] also discuss and reference many other A-stable methods. 
In addition, the report of Dahlquist et al. [4] provides a valuable survey of methods 
for stiff systems. 

Our main concern in this paper is with methods for the solution of stiff systems. 
Particularly relevant here are the implicit methods described by Rosser [16], Watts 
and Shampine [17], [18], and Watts [19]. From the viewpoint of advanced multistep 
methods, we discuss a subclass of the block implicit methods (in the terminology 
of Shampine and Watts) in [18] which are A-stable for all orders up to ten. An im- 
portant feature of the methods is that they are used in practice like one-step methods 
and thus have a simple step-changing facility. Although essentially discrete variable 
methods, we show that they can easily be used to obtain convergent global approxi- 
mations of y(x) and its derivatives. 

Finally, an algorithm is fully described for the practical implementation of the 

Received January 11, 1971, revised May 29, 1973. 
AMS (MOS) subject classifications (1970). Primary 65L05. 
Key words and phrases. A-stable, advanced multistep methods, stiff systems. 

Copyright 0 1974, American Mathematical Society 

163 



164 JACK WILLIAMS AND FRANK DE HOOG 

fourth order method applied to stiff systems. Some numerical results are presented 
and compared with the results obtained by Gear's method. 

2. Advanced Multistep Methods. The Results of Daniel. In general, methods 
using values of f(x, y), which are advanced further in x than are the values of the 
dependent variable used to approximate y', will be referred to as advanced multistep 
methods (AMM). A certain type of AMM has been considered by Daniel [5] (also 
see [6]), whose results we now describe. 

Let h = (b - a)/M, xi = a + ih, 0 < i < M, where M is a positive integer. 
Given starting values y, = -q,,, 0 < g < k - 1, a k-step AMM consists of finding 
a solution to 

k n+un 

(2.1) Ek-Yn-= h E nif(xs Yi), k ? n ? M. 
,1=0 i =n- 1, 

We may summarize Daniel's main results in 
THEOREM 2.1 (DANIEL). Let the AMM (2.1) satisfy 

(a) p(z) = akZ + ak- 1Z + . . . + ao 

has zeros z,, 1 < i < k, which satisfy I z, < 1, IziI = 1 m p'(z,) $ 0 (stability condition). 

(b) Ai3 I< A, O< Un -< us O - In -<I o 

jf(x, v) - f(x, w) I ? LiIv - wl, with u3, u, I and L all independent of h. 

(C) - y(x,)j O(hp), 0 ? A < k - 1, 

l|*=O ak-iy(xn-i) - h jn+Un 12f(xi, y(x>))ll = O(hp+ ), k _ n ? M (consistency 
condition). 

Then, for sufficiently small h, (2.1) has a unique solution with 

max I |yi - y(x,)j I = O(hp) as h -O where |LH = 

Of_ i < M 

3. A Class of AMM's. Let xn = a + nh, n > 0 and consider the subintervals 
[xnk, xnk+ ], n = 0, 1, 2, * * *, N - 1, where k > 1 and N are given fixed integers 
with b - a = Nkh. From (1.1), 

.Tnk+r 

Y(Xnkk+ r)- Y(Xnk+r-1) = f(x, y(x)) dx, 1 < r < k. 
Onk+r-i 

We now approximate the components of f(x, y(x)) over [Xn k, Xn k?+ ] by an inter- 
polating polynomial of degree k, yielding the k-step AMM 

k 

(3.1) Ynk+r 
- Ynk+r-1 h E sfnk+s, 1 < r _ k, 0 _ n < N - 1, 

s = o 

where fi = f(x,, y,). 
The results of Daniel may now be applied where we restrict the class of initial 

value problems (1.1) to those with sufficiently smooth solutions y(x). Here, p(z) = 
z - 1 and, by construction, (3.1) has order of accuracy p = k + 1. There follows 
from Theorem 2.1, 
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THEOREM 3.1. For starting values of order of accuracy O(hk+ 1), the AMM (3.1) 
is convergent with rate of convergence at least O(hk+l). 

For a system of m differential equations, define 

T T T T 
Yn+i = (Ycnk+li Ynk+2i , Ynk+k) T Fn+i = f fnk+. * Ink+k) 

o < n ? N -1, then, in terms of the appropriately defined mk X mk block matrices 
A, B, C and D, the k-step AMM (3.1) may be written 

(3.2) DYn+l - AY. = h(BFn+1 + CF.), 

o < n < N-I, where we define yo(yo T, YOT , oT)T and F0 = (fOT, T fT fOT)T 

Although (3.2) is referred to as a k-step method, it is computationally a one-step 
method with respect to the vector of values Y,+,, since only Ynk and fnk, the values 
from one point, are required for its calculation. Consequently, after computing a 
vector of values Y,+,, a change in step length can easily be made. 

Having applied Daniel's results, (3.2) may be written in a form more suitable 
for computation. With G = D-'A, Q = D-1B and R = D-1C, (3.2) becomes 

(3.3) Y.+, - GYn = h(QFn+1 + RF), O ? n < N - 1, 

Due to the type of construction, these formulas are the same as those discussed 
in [18]. For k = 2, 3, the methods have the following explicit forms. 

k 2. 

Y2n+ 1 - Y2n = A (5f2n + 8f2n+l - f2n+2)i 

Y2n+2 - Y2n = 
h 

(f2n + 4f2n+1 + f2n+2). 

k = 3. 

Y3n+1 - Y3n = 
h 

(9f3n + 19f3n+1 - 5f3n+2 + f3n+3)i 

Y3n+2 - Y3n = - (f3n + 4f3n+1 + f3n+2), 3 

Y3n+3 - Y3n = - (3f3n + 9f3n+1 + 9f3n+2 + 3f3n+3)- 8 

Additional explicit formulas, for 4 < k < 8, can be found in Rosser [16] or Watts [19]. 

4. A-Stability. 
THEOREM 4.1. The k-step AMM (3.3) is A-stablefor each 1 < k ? 8. For 9 < 

k < 20, the method is not A-stable. 
The results in Theorem 4.1 have been proved by Watts and Shampine [18] and 

Watts [19]. Also see Wright [20]. In view of this and the fact that our matrix method 
of proof is rather long, we shall not include it here. Unfortunately the proof in [18] 
and our proof both suffer from the fact that numerical methods are used in the 
final stages. In [18], the Routh-Hurwitz theorem is applied numerically to check 
the location of polynomial zeros; however, for 1 < k < 10, the authors of [18] 
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were able to use exact arithmetic to establish the results of Theorem 4.1 conclu- 
sively. Our approach led to the use of the QR algorithm for checking that certain 
k X k matrices have eigenvalues with negative real parts. Hence, by using a different 
approach, we are able to confirm the results of Watts and Shampine. 

5. Asymptotic Behaviour of the Discretization Error. In this section, we con- 
sider the asymptotic form of the discretization error for the k-step AMM (3.3). 
We treat the scalar differential equation and make the following assumptions: 

(i) The solution y(x) has sufficiently many continuous derivatives. 
(ii) g(x) = (af/ay)(x, y(x)) is continuous and continuously differentiable for 

x C [a, b]. 
(iii) The starting value yo satisfies 5(h) = yo - y(a) = O(hr), r > k + 2. 
We associate with the AMM (3.3) the difference operator 

L[Cf(x), h] = 1(x) - G(x -kh)- h(QD'(x) + R'(x -kh)) 

with 

cb(x) = (Cf(x + h), Cf(x + 2h), *--, C(x + kh))T, 

,'(x) = (V'(x + h), b'(x + 2h), *-., V'(x + kh))T, 

where C(fx) is any sufficiently differentiable function. We find that 

(5.1) L[Cf(x), h] = hk?2b(k?2(x)a + h k3(k?3) (x)f3 + O(h k4), 

where a and 3 are k component vectors whose elements are constants. In particular, 
it can be shown that, for k even, ak = 0. 

Now by using Theorem 3.1 and similar techniques presented in Henrici [11], 
results for the asymptotic behaviour of the discretization error en = yn - y(Xn) 
can be obtained. Since, however, similar results are developed in Watts [19], we 
shall not present proofs, but, for the sake of completeness and to aid the development 
of Sections 6 and 7, state the results as 

THEOREM 5.1. Under the conditions (i), (ii), (iii) above, the asymptotic behaviour 
of the discretization error in the solution of y' = f(x, y), y(a) = n by AMM (3.3) as 
h ->O, x = a + (kn + j)h, 1 < j _ k,O ? n < N- 1, is given by: 

for k odd, ekn+i = hk+1e1(x) + a(h)e3(x) + O(nk+2), 

for keven, ekn+i = hk+2[e2(x) - y(k+2)(x)ai] + a(h)e3(x) + O(hk+3). 

The functions e1(x), e2(x) and e3(x) are defined as the solutions of certain initial value 
problems involving g(x), y (k+2) (x) and y (k + 3) (X). 

Realistically, 5(h) may be identically zero in practice. For the application of 
extrapolation to the limit with k even, we must take account of the fact that the 
dominant term does not vary smoothly with j. For a given initial step length h, 
one possible method is to proceed with the normal halving of step lengths but to 
compute extrapolated values only for x = a + knh, 1 ? n < N. This set of x values 
is then always associated with the same value of j (j = k) for subsequent step lengths. 
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6. Global Convergence Properties. Consider Y(x) E Cl[a, b] defined by 

(6.1) Y(x) = Ynk + f FP(t) dt, X C [Xnk, Xnk+kb] 
2nk 

for 0 ? n N - 1, where Fn(t) = Ek=o 18(t)f(xnk+8, Ynk+8) the Lagrangian form 
of the interpolating polynomial appearing in (3.1). Clearly by the definition of the 
quantities yn, 0 < n _ Nk, Y(x) and Y'(x) interpolate the values of yn and fn, re- 
spectively. Hence in practice, for x E (xnk, xnk+k), Y(x) P(x), the polynomial 
of degree (k + 1) uniquely determined by P(Xnk+r) = Ynk+r, 0 _ r _ k, P'(xnk) = fnk. 

We have the following theorem which states that Y(x) and its appropriately 
defined k + 1 derivatives provide convergent global approximations to y' r ), 
O ? r ? k + 1. The theorem is presented for the important case of k even. 

THEOREM 6.1. Let f(x, y) be sufficiently smooth in DH:= { (x, y): a < x _ b, 
Y- y(x)l < H}, a neighbourhood of the solution y(x). Then for h sufficiently small 

andfor finite k, k even, x E [a, b], 

(6.2) Y(x) = y(x) + O(h k+2), 

(6.3) yr)(x) = y r)(X) + O(h k+2r), 1 < r < k + 1, 

and at the mesh points 

Y'(xjk+i) = y'(xnk+i) + O(h k+2), 1 < j < k, 0 < n < N - 1. 

We define for 2 < r _ k + 1, 1 < n ? N- 1, 

(6.4) y(r)( ) = 1( y(r ? y(r) ) 

the mean of the right-hand and left-hand derivatives of Y(x) at x = Xnk 

Proof. It has been shown in Theorem 5.1 that, for h sufficiently small and for 
O(hk+ 2) starting values, 

(6.5) Y(Xn) = y(xn) + O(h k+2), 0 < n < Nk. 

Hence, since k is finite, 
k 

Fn(t) E 18(t)f(xfnk+8, y(xnk+8)) + O(h k+2) 
a=O 

forO < n < N- 1, t G [Xnk, Xnk+k]. The error formula for Lagrangian interpolation, 
as applied to the function y'(t), now gives 

Fn(t) = y'(t) + O(h k+). 

Inserting this result and (6.5) into (6.1) implies (6.2). For x E (xnk, Xnk*k), 0 _ 
n ? N - 1, differentiation of (6.1) yields 

y(r)(X) = F(r-l)(X), 1 ? r ? k + 1. 

Now similarly, using the error formula for the differentiated form of the interpolating 
polynomial [15, p. 78] gives 

y(r)(x) = (r)(x) + O(h k+2r). 
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Hence with the definition (6.4), there follows (6.3) for 2 < r < k + 1 and the 
cases r = 1 follow with aid of the interpolating property of Y'(x). 

7. Estimation of Local Truncation Error. The results of Section 5 allow the 
development of rigorous results for estimating the size of the local truncation error. 
For practical computation, we need only consider the case of k even. We now regard 
the AMM (3.3) as a corrector formula which is used by iterating to convergence. 
By introducing a suitable predictor formula, the local truncation error in (3.3) can 
be estimated by a generalization of Milne's method [11, p. 257]. The analysis applies 
to the system (1.1). 

For the corrector 

(7.1) Y.+1 - GY. = h(QF.+1 + RF.), 

(5.1) shows that the true solution y(x) satisfies 

(7.2) Y(n + 1) - GY(n) = h(QF(n + 1) + RF(n)) + h k?2r + 0(h k3), 

(with Y(n + 1) = (y(xkfl? 1), y(Xk. +2), *.. , y(xkn + J)j) where since ak = 0 (k even), 

Tn (xly(k+2) (Xkn) a2Y (k+2)(Xkn) * a ly(k?2) (Xkn) 0)T 

We consider the predictor formula 

(7.3) Y:+, - GYn = h(Q*Fn + R*F.-l), 

where R*Fnl = (rlf(n-1 ) k, r2f (n- 1 ) k, . . . , rkf (n- I ) J)T, and 

(7.4) Y(n + 1) - GY(n) = h(Q*F(n) + R*F(n - 1)) + hk + 22no+ 0(hk+3) 

with on = (dly(k?2) (Xkn), d2y(k?) (Xkn), * * * , dkY (Xkn))T The formula (7.3) yields 
the predicted values Yn+1* = (Ynh+1*, Ynk+2* * , . Ynk+k*)T. Our objective is to 
now estimate with respect to the maximum norm, I 7In . 1 We shall assume that di . ai 
for 1 ? i ? k - 1. 

THEOREM 7.1. Let the predictor formula (7.3) satisfy (7.4) and let the conditions 
of Theorem 5.1 be satisfied. Then, for k even, the approximation rn for the local trunca- 
tion error in the corrector formula (7.1) satisfies,for Xkn = a + knh, 0 < n < N - 1 
as h -* 0, 

I1TnI = h (k+2)K max {IIYnk+i - y*k +,|/Idi - ail} + 0(h) 

where K max,,<, <,la |. 

Proof. From the results of Theorem 5.1 (extended in a natural way to the system 
(1.1)), the corrector formula (7.1) satisfies 

Yn- Y(n) = 0(h +2). 

Hence, in the standard fashion, (7.1) and (7.2) yield 

Yn+1 - Y(n + 1) - G( Y. - Y(n)) = -hh Trn + 0(hk); 

similarly, from (7.3) and (7.4), 

Y*+, - Y(n + 1) - G(Yn - Y(n)) = -hk+2 OT + 0(hk+3) 
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Subtracting these two equations gives 

Yn +I - =n* I-~((di a1)y (Xkn)(xk) , (dk - ak)Y'k+2) (Xk ))T + O(hk+3), 

from which with I TrnlI = KI ly (k+ 2) 1 I the required result follows. 
A considerable amount of practical experience with the cases k = 2 and 4 (for 

stiff and nonstiff systems) indicates that the above estimate for hk+ 21 Tnl is accurate 
and very reliable. For k = 2, the predictor formula (7.3), (7.4) is defined uniquely by 

Y(X2n+l) - y(x2n) = h2 (23y'(x2n) - 16y'(x2n-1) + 5Y'(x2n-2)) 

+ 3 h4y(4)(x2n) + 0(h 5), 

(7.5) 8 
h 

Y(X2n+2) - y(x2n) = 3 (19y'(x2n) - 2y'(X2n-1) + 7y'(X2n-2)) 

+ 8 h4y(4)(x2n) + 0(h5). 
3 

The corresponding estimate for the local truncation error reduces to 

(7.6) h4rnrII ' 81 maxt IIY2n+l - Y2*n+1I, 8 IIY2n+2 - Y*n+211} = En 

Two numerical examples which illustrate the effectiveness of this estimate are de- 
scribed at the end of Section 8. 

8. Practical Implementation of the Fourth Order Method. Numerical Examples. 
For the satisfactory practical use of the AMM (3.3) for stiff systems, suitable re- 
quirements are as follows. 

(i) An iteration scheme for obtaining Yn+1, which (assuming the existence of 
a solution) is convergent for those values of h which are (essentially) restricted only 
by the requested accuracy in the numerical solution. 

(ii) The control of accuracy based on estimates of the size of the local truncation 
error and corresponding step-size changing. 

The requirement (i) implies the use of a Newton-type scheme for obtaining Y"+1. 
The conventional halving and doubling of step size (performed blockwise) with the 
use of the estimate in Theorem 7.1 meet the needs of (ii). 

For k = 2, the corrector formula follows Eq. (3.3) with corresponding predictor 
formula and local truncation error estimate given by (7.5) and (7.6). For the cal- 
culation of (Y2n+1, Y27n+2)T, the application of a NT (Newton-type) scheme requires 
an approximation to the matrix 

J(n) = 
12 

-- hJ 'II I- - J2j 

where Jr is the Jacobian matrix ((Of/OY)(X2n+r, Y2n+r)). For the numerical treatment 
of general stiff systems, the very simple scheme outlined below was used. J(n) is 
approximated by 
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J(n) - 7 (n) - - ------ 

L- h I I- j_ 

where J1 represents an approximation to J1. J1 is obtained by using first order forward 
difference approximations to (af'/ay')(x,,+1, Y2.+1), i, i = 1, 2, * * , m. The resulting 
J(n) is held constant throughout the NT iteration. Only the essential details are 
presented on the understanding that the approximate Jacobian J1 is reused wherever 
possible (or convenient). 

Standard Scheme. Here the value of Yn,, = (Y2n+1, Y2.+2)T, n > 2, with respect 
to the step size h is obtained. Let the previously computed block f,, be defined with 
respect to the step size h, and let the LU factors of J(n - 1) be preserved. 

Stage 1. If h = h, then set J(n) = J(n - 1) and compute the predictor Y,, i*; 

also set test = 1. Otherwise, set test = - 1 and Yn+,* = (Y2n, Y2n )T, then update 
and compute the LU factors of the resulting J(n). 

Stage 2. Allow < 4 NT iterations and, if convergent, continue at Stage 3. Other- 
wise, update J1, then compute the LU factors of the resulting i(n) and allow ? 3 NT 
iterations. If convergent, continue at Stage 3, otherwise, half h and return to Stage 1. 

Stage 3. Yn,+ has now been obtained and is accepted if test = -1. Otherwise, 
perform appropriate tests for the size of the local truncation error using (7.6) If 
a step change is required, return to Stage 1; otherwise, the value of Yn+, is accepted. 

Starting Scheme. Here, by a suitable modification of the above standard scheme, 
we compute both Y1 and Y2 with respect to a step size h. The size of h is automatically 
chosen so that, with the resulting Y2* and Y2, the local truncation error test is satisfied. 
An initial value of h is first specified and the predictor Y* = (Yo, Y0)T is used. 

We note that for small enough h the above corrector iteration is convergent. 
The allowable number of iterations in Stage 2 are based on a large number of nu- 
merical tests. An alternative starting scheme is to use the generalized technique of 
step doubling for error estimation and thus test the accuracy of Y1 directly. 

From Stages 1 and 3 it is seen that the effect of a step change (halving or doubling) 
is to set test = -1; then Yn+l is accepted without performing the local truncation 
error test. Therefore, there exists the possibility that the accepted Y,+1 would fail 
the local error test. As far as practical stiff problems are concerned, it is unlikely 
that the above scheme would yield values of Yn+1 which would fail the local error 
test over several consecutive steps. At the beginning of the range, Y2 always satisfies 
the local error test. 

Given a standard LU factorization routine, the above scheme is not difficult 
to program. 

A large number of stiff problems have been successfully solved using the above 
scheme (including the ten test problems in [4]). We compared our results with those 
obtained by using Gear's variable order method [8] (up to order 6) with difference 
approximations for Jacobians. The Gear program used the double precision Fortran 
subroutine DIFSUB [9] and was run on a PDP 10 system whose double precision 
is equivalent to approximately sixteen decimal digits. The AMM was implemented 
in Algol and run on a CDC 7600 machine with a similar precision of approximately 
sixteen decimal digits. 
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In the AMM program, the following local error test was used: 

E. _< c maxf 1, II Y.+, II. 

Here, En is the estimate (7.6) of the local truncation error with respect to Y,+, and e 

is the requested error tolerance. In DIFSUB, a very similar local error test was used 
by updating the YMAX array so that 

YMAX(i) = max(l, IyI), for i = 1, 2, , m. 

We first summarize the results and then describe three illustrative problems. 
1. For moderate accuracy, that is with E ranging between i0' and 10-6: 
(a) the two methods were comparable in terms of the number of derivative 

evaluations, 
(b) the number of LU factorizations (of matrices order 2m) in the AMM was 

approximately equal to the number of factorizations (of matrices order m) in the 
Gear program. 

TABLE 1 

maximum absolute ND/LU 
error 

Requested 
error AMM GEAR AMM GEAR Range 

-4 _4 
1.4.10 9.8.10 104/6 94/5 (0,.01) 

- .4.10 9.8.10 165/9 133/8 (0, . 1) 

10 3.4.10 2.3.10 314/17 213/11 (0,1) 

3.4.10 2.3.10 387/21 266/15 (0,10) 

3.4.10 2.3.10 500/27 366/24 (0,1000) 

1.3.10-5 3.5.10-5 121/5 111/6 (0,.01) 

1.3.10 7.5.10 192/9 195/10 (0, .1) 

10 2.3.10 8.0.10 335/14 283/13 (o01) 
4 ~~5 

2.3.10 9.0.10 418/18 367/16 (0,10) 

2.3.10 1.1.10 545/24 477/24 (0.1000) 

1.9.10-6 2.2.10-7 165/5 145/6 (0,.01) 
-6 -5 

2.2.10 1.4.10 252/9 291/12 (0,.1) 

105 1.6.10 1.4.10 416/11 437/17 (0,1) 

1.6.10 2.1.10 532/15 537/21 (0,10) 

1.6.10 2.1.10 702/22 677/28 (0,1000) 

-7 ~ -8 
1.9.10 9.1.10- 270/6 207/7 (0,.01) 

1.9.10 2.7.10 379/10 310/12 (0, .1) 

10 1.7.10 2.7.10 660/14 465/15 (0,1) 

1.7.10 2. 2.9.10 836/19 603/20 (0.10) 

1.7.10 2.9.10 1062/26 809/29 (0,1000) 
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2. For higher accuracy, up to e = 10-8: 
(a) the AMM required up to twice as many derivative evaluations, 
(b) the behaviour in 1(b) applied. 
3. For some problems with eigenvalues close to the imaginary axis, Gear's 

method can be prohibitively inefficient as compared to the A-stable AMM. 
Generally, for moderate accuracy, Gear's method tends to favour the use of the 

lower order methods, thus leading to the behaviour in 1 [14, p. 286]. On many machines 
with moderately sized m, the difference in the linear algebra would not be significant, 
but, in this respect, the AMM cannot be expected to be competitive with Gear's 
method for large systems. 

The following three problems were solved over ranges up to [0, 1000] and results 
are given at the first step to pass 10I for i = -2, - 1, 0, 1 and 3. Tables 1-3 include 
the requested error E, the maximum absolute/relative error to date in the least ac- 

TABLE 2 

Maximum relativeNDL 
error ND]LU 

Reques te 
error AMM GEAR AMM GEAR Range 

5.8.10O 4.1.10k 99/6 87/5 (0, .01) 

5.8.10 5 4.1.104 162/9 162/11 (0, .1) 

10 3.9.10 5.4.10 407/19 406/16 (0, 1) 

3.9.10-4 5.4.10-3 474/23 480/20 (0, 10) 

3.9.10 5.4.10 594/29 635/35 (0, 1000) 

-6 5 
9.5.10 4.4.10 111/5 116/5 (0, .01) 

9.5.10 4.4.10 188/9 167/8 (0, .1) 

10 4 .0. 10 4.3.10 473/16 454/14 (0, 1) 

4.0.10- 4.3.10 563/21 803/24 (0, 10) 

4.0.10 4.3.10 752/29 943/32 (0, 1000) 

1.5.10 4.5.10 141/5 148/7 (0,.01) 

1.5.10 4.5.10 213/8 273/14 (0, .1) 

10 2,7.10 3.2.10 611/12 613/12 (0, 1) 

2.7.10 3.3.10 733/17 812/30 (0, 10) 

2.7.10-6 3.3.10-5 880/24 1002/38 (0, 1000) 

1.9.10-7 6.4.10-7 232/6 202/9 (0, .01) 

1.9.10-7 9.3.10-7 356/11 307/15 (0, .1) 

10 2.8.10 5.0.10 998/15 763/22 (0, 1) 

2.8.10 5.0.10 1176/21 1026/32 (0, 10) 

2.8.10 5.0.10 1370/28 1261/40 (0, 1000) 
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TABLE 3 

Maximum absolute 
82 errorD/LU 

AMM GEAR GEAR Range 

2.2.10-8 1.4.10-7 400/8 224/6 (0, .01) 

2.2.10 1.4.10 508/13 341/13 (0, .1) 

1 2.2.10 1.4.10 638/14 421/16 (0, 1) 

2.2.10 1.4.10 968/17 581/23 (0, 10) 

2.2.10 1.4.10 1276/21 728/28 (0, 100) 

1.4.107 224/6 (0, .01) 

1.4.10 As for 341/13 (0 , .1) 

As for 1.4.10 82 1 421/16 (0, 1) 

10 82 - 1 1.4.10-7 581/23 (0, 10) 

4.4.107 3111/34 (0, 100) 

1.4.10 7 224/6 (0, .01) 

As for 1.4.1o As for 341/13 (0, .1) 

100 82 1 1.4.T07 2 1 421/16 (0, 1) 

7.4.10 3803/32 (0, 10) 

7.4.10 5001/32 (0, 12) 

Abandoned Abandoned 

curate component, the number of derivative evaluations (ND) and the number of 
LU splits (or matrix inversions in Gear's method). All the problems were run with 
an initial step of size equal to 2- 13. For Problem 1, however, with e = 1o-', 10' 
and 106, we give Gear's published results [9] for this problem (these results are in 
very close agreement with those obtained from our implementation of Gear's method). 

Each problem is critically stable in the sense that, if an error in excess of about 
lo- occurs, the solution of the perturbed problem may have an unbounded solution. 

Krogh Problem 1 [13]. 

Y= By + U (Z1, Z2, Z3, Z4) Y(O) = (-1, -1, -1 -1), 

where (z1, Z2, Z3, Z4)T = z = Uy, B = U diag(fh, 2, 03, 034)U, U is the unitary martix 
with diagonal elements equal to - 2 and all other elements equal to 2, and 013 = 1000, 
12 = 800, 3 = -10 and 4 = 0.001. The eigenvalues of the Jacobian matrix are 
equal to (1i + 2) at x = 0 and approach - IiI as x -* o. The solution is 

y = Uz withzi = 13i/(1 - (1 + 13i)e"i), i = 1, 2, 3, 4. 

The results are given in Table 1. 
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TABLE 4. Problem 1 

Requested Estimate Exact 
error X E T 

n n 

0.125 1.50.10-5 1.58.10-5 

0.5625 4.28.10-5 3.20.10-5 

10-4 2 6.36.107 4.26.10 

4 1.60.10-5 7.00.10-6 

6 2.08.10-5 1.39.10 5 

10 3.34.10-6 2.15.106 

0.1094 8.83.10-7 9.43.10-7 

0.6094 1.18.10-7 1.07.10-7 

10-6 2 3.53.10-8 2.91.10-8 

4 4.28.10-8 3.51.10-8 

6 1.33.10 1.00.107 

10 2.31.10- 1.61.10 
- 

-9 _ 
0.1016 3.31.10 

9 
3.39.10- 

0.5078 8.62.10 8.81.109 

10-8 2.0625 1.88.10-9 

4 2.57.10-9 2.32.10-9 

5.5 6.84.1 10 6.32.10 10 

10 7.95.10- 1 7.24.10-10 

Krogh Problem 2 [13]. 

y' = -By + UT(Z1 - 
SZ2, ZZ2, 32, Z4)T y(O) = (0, -2, -1, -1)T, 

where z = Uy, U is defined in Problem 1, 

01 -02 0 0 

B= U 02 11 0 0 
U. 

K 0 3 0 

_0 0 ?0 /4 

and 

1 = -10, 12 = 10, (3 = 1000, 14 = 0.001. 

The eigenvalues are equal to -(f31 + 2) ? 432, -0(3 + 2) and-(4 + 2) at x = 0, 
and approach -Io1, I i132, -11331 and-1141 as x -* cx . The solution is y = Uz with 
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Z= 2(fliw1 - 02W2)/(Wl + w2), 

Z2 = 2(132w1 + l W2)/(W2 + W2), 

Zi = ,/( - (1 + fli)e#tx), i = 3, 4, 

where 

wI = 1 - e ix[(I + 1) cos 12X - 12 sin 2x] 

and 

W2 = e'PX32 COS 12x + (1 + 01) sin #22x]. 

The results are given in Table 2. 
Problem 3. This is a modified form of Problem 2. 

y = -By + U(O, ,O z2, z2)T, y(O) = (-1 -1,0, 0O)T, 

where z = Uy, U is defined in Problem 1, and B is defined in Problem 2 with 1, =1, 

13 = 1000, and 13 = 0.001. Two of the eigenvalues are equal to -131 Az i2 for all x; 

TABLE 5. Problem 2 

Requested Estimate Exact 
error x E T 

n n 
c 

0.125 1.77.10-5 2.59.10-5 

0.5156 1. 72. 10-5 1.19.10-5 

1.125 5.93.10- 4.04.10 6 
10 -4 1.2 41-6 4 4 o6 10 ~~ 32.34.10 1.47.106 

6 2.11.10-6 1.39.10-6 

10 3.36.10-6 2.15.10-6 

0.1016 4.85.10-7 5.31.10-7 

0.5039 8.26.10 7.49.108 

10 1.0156 6.96.10 6.11.108 

3 1.35.10-7 1.05.10-7 

6 1.33.10-7 1.00.10-7 

10 2.31.10-7 1.61.10-7 

0.1016 1.94.109 1.98.109 

0.5020 5.34.10 5.08.109 

10-8 1.0078 4.49.10-9 4.23.10-9 

3 7.97.10 6.97.109 

5.75 5.66.10 5.24.10 10 

10 7.95.10-1 7.25.10-10 
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the remainder are - (0i + 2) when starting and approach - I as x -*> , for i = 3 
and 4. We consider the effect of eigenvalues close to the imaginary axis by running 
this problem with 32 = 1, 10 and 100, and with a requested error e = 10'-. In each 
case, the solution is y = Uz with z, = z, = O and z, = 0i/(I-(1 + 3i)eoD), i = 3, 4. 
The results are given in Table 3 and indicate clearly how the stability regions for 
Gear's method can restrict the increase in step size. 

Finally, we include two numerical examples which illustrate the effectiveness 
of the estimate for the local truncation error (7.6). Test Problems 1 and 2 were solved 
using the AMM program with the local error test En _ c, for the values e = 10' , 

106 and 108. The results are given in Tables 4 and 5. They include the estimate 
En and the corresponding exact value of the normed local truncation error 

Tn = II Y(n + 1) - GY(n) - h(QF(n + 1) + RF(n))|I|I. 

The x values are chosen from those which are automatically selected by the program. 
It is of interest to note that for these two problems the estimate En has the desirable 

property of tending to overestimate the size of Tn. For the respective problems, the 
proportion of overestimates was approximately 90% and 70%. 

9. Conclusions. A class of A-stable advanced multistep methods for the nu- 
merical solution of initial value problems has been described. The fourth order 
method for the solution of stiff equations described in Section 8 is easy to implement, 
and the numerical results indicate that in terms of satisfying the user's error tolerance, 
it is extremely reliable. For systems which are not large and for moderate accuracy, 
the method compares favourably with Gear's method. Also, for some problems with 
eigenvalues close to the imaginary axis, the AMM can be considerably more efficient 
than Gear's method. This may be of importance in some problem areas, for example, 
problems arising in circuit analysis. 
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